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My research is primarily concerned with probability theory and its applications. I am particularly

interested in the convergence behavior of Markov chains de�ned on discrete combinatorial and algebraic

structures. I also enjoy working on distributional approximation using Stein's method techniques.

Markov Chains.

A major theme in my research is the determination of non-asymptotic convergence rates of random

processes. For example, suppose that {Xk}∞k=0 is an ergodic Markov chain with �nite state space X ,
transition probabilities P (x, y) = P {Xk+1 = y |Xk = x}, and stationary distribution π. It is classical

that the exponential rate of convergence is governed by the subdominant eigenvalue of the transition

operator, but this information is generally not su�cient for describing the short term mixing behavior.

In practice, one would like to have sharp upper and lower bounds on d
(
P kµ , π

)
, where d is a suitable

metric on the space of probability measures on X and P kµ is the distribution of Xk given that X0 ∼ µ.
In particular, given ε > 0, it is of interest to estimate t∗mix(ε) = inf

{
k ∈ N : supµ d

(
P kµ , π

)
< ε
}
, the

number of steps required for the chain to be within ε of stationarity for any initial distribution. In

many cases there is a sharp transition to equilibrium in the sense that supµ d
(
P kµ , π

)
stays close to its

maximum value for some time and then abruptly drops and tends rapidly to zero. Though this �cut-o�

phenomenon� appears to be quite common in most cases of interest, the nature of its existence remains

one of the central mysteries in the modern theory of Markov chains.

The standard example of this line of inquiry is the question �How many shu�es are required to mix

up a deck of n cards?� This is generally interpreted in terms of a Markov chain on the symmetric

group where σ ∈ Sn represents the arrangement with σ(j) the label of the card in position j. Often,

the chain evolves as a random walk on Sn, so that after k shu�es the state of the deck initially ordered

as X0 = σ0 is Xk = σ0σ1 · · ·σk where the σ′is are chosen independently from some probability measure

on Sn. Under mild assumptions on the measure driving the walk (which determines the type of shu�e

being performed), the stationary distribution will be uniform, corresponding to a completely �mixed

up� deck of cards. Here, cut-o� is equivalent to the existence of a sequence tn → ∞ such that, as n

goes to in�nity, the distance to uniformity after (1 + ε)tn shu�es of an n-card deck approaches zero for

ε > 0 and approaches its maximum for ε < 0. In this case, it can be said that tn shu�es are necessary

and su�cient to mix a deck of n cards. A problem of this sort that I am particularly interested in right

now involves the random-to-random insertion shu�e, which proceeds by choosing a card at random

and then moving it to a random location. Though the dynamics are quite simple, the question of

whether this chain exhibits total variation cut-o� has been open for several decades and it seems that

its resolution will require some novel ideas.

The broad goal of these investigations is to gain a deeper understanding of how random processes

equilibrate. Beyond the intrinsic interest of this central question, one of the main attractions for me

is that these seemingly straightforward problems are often quite challenging and involve the interplay

of diverse areas of mathematics, ranging from classical probability and linear algebra to representation

theory and PDEs. Moreover, the techniques and results have found a wide variety of applications

throughout the sciences, so there are plenty of opportunities for interdisciplinary collaboration. Finally,

in order to obtain sharp results one generally has to really get to know the chain in question and

understand what lies at the heart of its mixing behavior. For this reason, I am often drawn to examples

in which the state space is interesting in its own right. For excellent overviews of various aspects of

Markov chain mixing, I highly recommend [23, 15, 37, 29].
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Abelian Sandpiles

A recent example of my work with Markov chains involves random walks on abelian sandpiles. These

objects were introduced by physicists in the late eighties as a toy model for self-organized criticality

[4], and have since appeared in a wide variety of contexts [24]. The general set-up is a simple connected

graph G with vertex set V = {v1, ..., vn−1, vn = s}. The vertex s is called the sink. A sandpile is a

collection of indistinguishable chips distributed amongst the non-sink vertices Ṽ = V \ {s}, and thus

can be represented as a function η : Ṽ → N0. The con�guration η is stable if η(v) < deg(v) for

each v ∈ Ṽ . If η(v) ≥ deg(v), then v is allowed to topple, sending a chip to each of its neighbors.

This may cause other sites to become unstable, leading to further topplings, and chips falling into the

sink are lost forever. The nomenclature derives from the fact that the �nal stable con�guration does

not depend on the order in which topplings take place. (The presence of the sink ensures that any

con�guration can be stabilized by performing �nitely many topplings at unstable sites.) A natural

Markov chain on stable sandpiles evolves at each time step by adding a chip to a random vertex and

stabilizing. Since the set S of stable con�gurations equipped with the relation of pointwise addition

followed by stabilization has the structure of a commutative monoid [3], the process can be interpreted

as a random walk on S driven by the uniform distribution on single-chip con�gurations. The recurrent

communicating class of this chain is the minimal ideal Γ = η∗ + S where η∗(v) = deg(v) − 1. As the

kernel of a commutative semigroup, Γ forms an abelian group, and the sandpile chain restricted to

recurrent states can be regarded as a random walk on Γ.

In joint work with Dan Jerison and Lionel Levine [21], we have found a way to compute the eigen-

values and eigenfunctions of the transition operator in terms of functions h : V → T which satisfy a

mean value property with respect to the geometric mean along with a boundary condition at the sink.

Speci�cally, de�ne the set of multiplicative harmonic functions on G by

H =
{
h : V → T such that h(v)deg(v) =

∏
u∼v h(u) and h(s) = 1

}
.

Then H is �nite with cardinality equal to the number of spanning trees in G, and we have

Theorem 1. For h ∈ H, de�ne fh : Γ → T by fh(η) =
∏n
i=1 h(vi)

η(vi). Then {fh}h∈H is an or-

thonormal basis of eigenfunctions for the sandpile chain on G. The eigenvalue corresponding to fh is

λh = 1
n

∑n
i=1 h(vi).

The choice of generators for the random walk ensures that the sandpile chain is irreducible and

aperiodic, so it follows from classical theory that the k-step distributions converge to the uniform

measure on recurrent con�gurations as k → ∞. (In fact, our formula for the eigenvalues generalizes

to arbitrary chip addition distributions and shows that the chain is aperiodic even if we do not allow

chips to be added to the sink.) Using Fourier methods and other techniques from Markov chain theory,

we are able to bound the mixing time in terms of this spectral information. For example, we showed

that the sandpile chain on the complete graph Kn exhibits total variation cut-o� at time 1
4π2n

3 log(n),

whereas the sandpile chain mixes instantly on the cycle Cn, and in between order n and n log(n) steps

on the torus Zm × Zm with n = m2 vertices.

For general graphs, computing the mixing time can be quite delicate. However, up to a log factor

of the order of the sandpile group, the mixing time is determined by the maximum modulus of the

nontrivial eigenvalues of the transition matrix, and we show that

Theorem 2. If G = (V,E) is a simple connected graph with |V | = n and max
v∈Ṽ deg(v) = d, then

every nontrivial eigenvalue of the sandpile chain on G satis�es |λ| ≤ 1− 8

d2n
.
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Theorem 2 implies that the mixing time of the sandpile chain is O
(
d2 log(d)n2

)
. A more involved

argument which takes all eigenvalues into account and uses facts about the smoothing parameter from

[27] gives an improved bound of O
(
d2n log(n)

)
.

An interesting fact that has emerged from our investigations is that one can sometimes lower bound

the subdominant eigenvalue (and thus the mixing time) by checking for certain substructures in the

underlying graph. The idea is that large eigenvalues correspond to nearly constant multiplicative

harmonic functions. We say that a graph H = (W,F ) is a gadget of size m if there is a function h̃ on

W which maps a proper subset W ◦ ⊂ W with |W ◦| = m to T \ {1}, maps W \W ◦ to 1, and satis�es

h̃(v)deg(v) =
∏
u∼v h̃(u) for all v ∈W . If (W,F ) is an induced subgraph of G with boundary contained

in W \W ◦, then h̃ extends to a multiplicative harmonic function on G which maps V \W ◦ to 1. When

m ∈ O(1), this implies that the spectral gap of the sandpile chain is O
(
n−1

)
, which matches the lower

bound from Theorem 2 for bounded degree graphs.

A typical example of a gadget is the following: If v1, v2 ∈ V have the same set of neighbors, N , then

{v1, v2} ∪ N gives a gadget of size 2. There are |N | − 1 nontrivial multiplicative harmonic functions

which map V \ {v1, v2} to 1, de�ned by setting hω(v1) = ω, hω(v2) = ω−1 for ω a nontrivial |N | th
root of unity. One reason gadgets are intriguing is that they show that, unlike ordinary random walks,

one can sometimes dramatically slow down the mixing time by �wiring in� a small gadget o� in some

corner. Also, being able to infer global properties from local information can be extremely useful for

complicated graphs. For instance, we were able to use the gadget paradigm to compute the order of

the spectral gap of the sandpile chain on Sierpinski gasket graphs despite the fact that no one has yet

been able to deduce the structure of the corresponding sandpile group.

A �nal feature of our theory which deserves mention is that one can bound the sizes of eigenvalues

of sandpile chains in terms of the lengths of certain vectors in appropriate �dual lattices.� As a

consequence of this correspondence, we have discovered an inverse relationship between the spectral

gap of the sandpile chain and that of ordinary random walk on the underlying graph:

Theorem 3. Let β denote the random walk spectral gap of a graph G on n vertices. Then the spectral

gap of the sandpile chain on G satis�es γ ≤ 4π2

βn
.

This shows, for example, that the sandpile chain on a bounded degree expander graph has the smallest

possible gap of all graphs with the same number of vertices and maximal degree. It also enables us to

estimate the mixing time of sandpile chains on certain families of random graphs such as Erd®s-Rényi

graphs and random d-regular graphs.

Hyperplane Arrangements

I am also interested in extending my thesis work on random walks on the chambers of hyperplane

arrangements. The basic idea here is that one has a �nite collection of codimension-1 subspaces of

Rn which carve the ambient space into disjoint pieces called faces. The n-dimensional faces are called

chambers and there is a natural semigroup product on the set of faces with respect to which the

chambers form a two-sided ideal. By endowing the faces with a probability measure, one can construct

a random walk on the chambers in terms of repeated left-multiplication by randomly chosen faces.

Much of the interest in hyperplane chamber walks lies in the fact that a surprisingly diverse assortment

of Markov chains can be represented within this framework. Examples include models of conquering

territories, coupon collecting, and queuing systems, as well as a large number of card shu�ing schemes

and other natural random walks on �nite Coxeter groups. This construction was �rst introduced by

Pat Bidigare in 1997 [9], and subsequent investigations have yielded a rich and fascinating theory,

showing that the transition matrices are diagonalizable over R with explicitly computable eigenvalues
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and establishing a criterion for ergodicity along with a description of the stationary distributions and

upper bounds on convergence rates [8, 11]. A general description of the left eigenspaces of an associated

operator in the face semigroup algebra has also been given [14], and many of these ideas have been

further generalized to the setting of oriented matroids [11], left-regular bands [10, 36], and R-trivial

monoids [2].

In my dissertation [32], I introduced an alternative description of these hyperplane walks in terms

of stacking rows of colored tiles which allows for easy visualization and admits various generalizations.

Using this perspective, I was able to give an explicit construction of the right eigenfunctions corre-

sponding to the largest eigenvalues (along with a general prescription for �nding others) by projecting

the walk onto various subarrangements. The importance of eigenfunctions lies in the fact that the

k-step distributions can be characterized by the expectations they assign to various functions. For

a diagonalizable chain, such functions can be expanded in an eigenbasis and the eigenvalues tell us

exactly how the di�erent components decay as the chain evolves. Since so many interesting Markov

chains can be represented as random walks on hyperplane arrangements, a general theory of their

eigenfunctions provides valuable information in a wide range of problems.

To connect with the introductory example, many common classes of shu�ing procedures (such as

biased a-shu�es, ri�e shu�es with �xed cut size, and top-m-to-random shu�es) can be modeled

in terms of random walks on the braid arrangement driven by measures which are invariant under

transpositions, and it follows from my work on eigenfunctions for hyperplane walks that

Theorem 4. If w is a probability measure on the faces of the braid arrangement which is invariant

under transpositions, then

φ(i,j)(π) = 1{π−1(i) < π−1(j)} − 1

2
, 1 ≤ i < j ≤ n

are linearly independent eigenfunctions corresponding to the subdominant eigenvalue of the associated

random walk on Sn.

As an application of the preceding theorem, consider the shu�e which proceeds by cutting o� the

top m cards and inserting them randomly amongst the remaining n −m cards while retaining their

relative order. Let P k denote the distribution of the deck after k shu�es of this type (starting with

an ordered deck, say) and U the uniform distribution over all possible arrangements. Using Wilson's

method [40] and Theorem 4, I showed that

Theorem 5. If k ≥ n(n− 1)

4m(n−m)
log(n)− c n(n− 1)

m(n−m)
, then

∥∥∥P k − π∥∥∥
TV
≥ 1− 3e3m−4c.

For m �xed, this matches the best known upper bound on mixing time up to a factor of 4 [16].

Markov chain eigenfunctions can also be used to bound mixing times from above. For example, I

showed that hyperplane chamber walks are stochastically monotone with respect to various general-

izations of the weak Bruhat order and used eigenfunctions in conjunction with coupling arguments

from [22] to obtain upper bounds in certain cases. Speci�cally, if {Hi}mi=1 is a central arrangement of

hyperplanes in Rn, writing σi(F ) for the ith sign sequence coordinate of a face F (which indicates its

location relative to Hi), and λi for the eigenvalue indexed by the �at Hi, one has

Theorem 6. Let P be the transition operator for an ergodic hyperplane chamber walk with stationary

distribution π. If the hyperplane eigenvalues satisfy λ1 = ... = λm = λ ∈ (0, 1), then for any k ∈ N and

any initial state C0 ∈ C, ∥∥∥P kC0
− π

∥∥∥
TV
≤ λk

m∑
i=1

P{σi(Y ) 6= σi(C0)}, Y ∼ π.



RESEARCH STATEMENT 5

Stein's Method.

My other main research interest at this point involves studying the convergence behavior of se-

quences of random variables using an approach known as Stein's method. Stein's method refers to a

general framework based on solutions of certain di�erential or di�erence equations for bounding the

distance between the distribution of a random variable X and that of a random variable Z having

some speci�ed target distribution. The metrics for which this approach is applicable are of the form

dH (L (X),L (Z)) = suph∈H |E [h(X)]− E [h(Z)]| for some suitable class of functions H, and include

the Kolmogorov, Wasserstein, and total variation distances as special cases. The basic idea is to �nd an

operator A such that E [(Af) (X)] = 0 for all f belonging to some su�ciently large class of functions

F if and only if L (X) = L (Z). (For example, Charles Stein proved that Z ∼ N (0, 1) if and only if

E [Zf(Z)− f ′(Z)] = 0 for all Lipschitz f [39].) If one can then show that for any h ∈ H, the equation
(Af) (x) = h(x) − E [h(Z)] has solution fh ∈ F , then upon taking expectations, absolute values, and

suprema, one �nds that

dH (L (X),L (Z)) = sup
h∈H
|E [h(X)]− E [h(Z)]| = sup

h∈H
|E [(Afh) (X)]| .

Remarkably, it is often easier to work with the right-hand side of this equation and the techniques for

analyzing distances between probability distributions in this manner are collectively known as Stein's

method. Wonderful surveys of the subject can be found in [35, 13].

One of the earliest Stein's method techniques for estimating the error in normal approximation

involves the construction of an exchangeable pair (W,W ′) such that E [W ′ |W ] = (1 − λ)W for some

λ ∈ (0, 1). A common method of obtaining these Stein pairs is to take successive steps of a reversible

Markov chain in equilibrium. In [19], Jason Fulman used a non-reversible Markov chain to construct

a Stein pair with which to bound the rate of normal convergence for the number of descents and

inversions in a random permutation. My initial foray into the subject was concerned with generalizing

Fulman's work to treat the number of d-descents in a random permutation. (For any 1 ≤ d ≤ n− 1, a

pair (i, j) is said to be a d-descent of σ ∈ Sn if i < j and σ(j) < σ(i) ≤ σ(j) + d, and the number of

d-descents is denoted Desn,d(σ). The cases d = 1 and d = n− 1 correspond to descents and inversions,

respectively.) By using a similar construction as [19] and appealing to a result due to Adrian Röllin

regarding the necessity of exchangeability assumptions in Stein bounds [34], I proved

Theorem 7. For any �xed d ∈ N, there is a universal constant M = M(d) such that for all n ≥ d,

x ∈ R, ∣∣∣∣P(Desn,d − µn,dσn,d
≤ x

)
− Φ(x)

∣∣∣∣ ≤ M√
n

where Φ is the standard normal c.d.f., µn,d = E [Desn,d], and σn,d =
√
Var(Desn,d).

I established similar bounds when d grows as a function of n. Interestingly, my later work on

eigenfunctions for hyperplane walks showed that for all 1 ≤ d < n, Desn,d : Sn → N0 is an eigenfunction

for the subdominant eigenvalue of a large class of random walks on Sn that includes the random-to-end

shu�e, a fact which lies at the heart of the arguments in [19, 31].

Another example of my work on Stein's method is the paper [33], joint with Haining Ren, in which

we established the �rst Stein's method framework for Laplace approximation and applied it to the

study of random sums. We began by showing that a random variable X has the symmetric Laplace

distribution with mean zero and variance 2b2 if and only if E [g(X)] − g(0) = b2E [g′′(X)] for every

function g with g, g′ absolutely continuous and g, g′, g′′ bounded. This result is interesting in its

own right as it involves a second order di�erential operator and we show that it can be obtained by

iterating several more traditional methods for �nding characterizing equations. We then introduced a
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distributional transformation which has the Laplace distribution as a �xed point and can be realized in

terms of the zero bias transformation, and used this to derive general bounds on the distance between

the law of a random variable X and the Laplace(0, b) distribution. Finally, inspired by work of Peköz

and Röllin on exponential approximation [30], we applied these results to construct general bounds on

the distance of various random sums to the Laplace distribution. As a special case, we proved

Theorem 8. Let X1, X2, ... be a sequence of independent random variables with E [Xi] = 0, E
[
X2
i

]
=

2b2, supi E
[
|Xi|3

]
= ρ <∞, and let N ∼ Geometric(p) be independent of the X ′is. Then

dBL

(
L

(
p

1
2

N∑
i=1

Xi

)
,Laplace(0, b)

)
≤ p

1
2
b+ 2

b

(
b
√

2 +
ρ

6b2

)
where dBL denotes the bounded Lipschitz metric.

Future Directions.

I am ultimately interested in developing a deeper understanding of the convergence behavior of

various stochastic processes and establishing new techniques to quantify convergence rates. My general

research program is based on exploring these issues through concrete examples. In both Markov chain

theory and Stein's method there are a plethora of open problems, ranging from longstanding questions

that seem to require deep new insights to those which are likely amenable to classical techniques and

careful analysis, making for excellent undergraduate research projects.

In the case of Markov chains, there have been numerous advances over the course of the last several

decades (see [15, 23, 29]), but many problems of interest remain unsolved. For instance, though

lower bounds on variation distance are often fairly straightforward in speci�c examples, more general

techniques such as Wilson's method [40] would be extremely useful. Also, many approaches have been

developed for the analysis of reversible chains, and it would be nice to have more methods of extending

them in cases where one no longer has the spectral theorem at their disposal. A good starting point

for these investigations is to consider chains in which the transition operator is diagonalizable but not

necessarily normal, as in hyperplane walks [8] and Hopf-power chains [17]. Perhaps the most glaring

open problem concerns establishing necessary and su�cient conditions for cut-o� in total variation.

Such conditions are known for Lp cut-o� with 1 < p <∞ [12] and there has been some exciting progress

as of late [5], but we still do not understand what lies at the heart of this remarkable phenomenon.

In my investigations of hyperplane walks, I was able to get a lot of mileage out of �lumping� or

projecting chains onto smaller state spaces and have since become quite interested in the dependence

relations between eigenvectors arising from lumping according to di�erent equivalence relations. In the

case of hyperplane walks, such knowledge may yield a proof of diagonalizability in a more probabilistic

context. I also found an analogous method of state space reduction which allows one to recover left

eigenvectors in examples such as random walks on �nite groups that I would like to further explore.

Finally, I was able to formulate some hyperplane walks in terms of �product chains� and slightly

generalize that notion. I would like to extend this generalization and better understand the relations

between products and projections [32].

There is also quite a bit more to be done with the theory of random walks on abelian sandpiles.

We have established some general bounds that are of the correct order in certain examples, but we

need more re�ned estimates (possibly involving additional graph parameters) to obtain sharp rates

for a larger class of graphs. Furthermore, we would like to adapt our methods to answer structural

questions about sandpile groups and to explain various phenomena that have been found in speci�c

cases, such as the multiple time scales from [38].
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There are several other interesting Markov chains that I am thinking about at present: the random

walks on irreducible representations of �nite groups from [18, 20], the ��ip chains� on Catalan objects

studied in [26, 28], and the random-to-random shu�e mentioned in the introduction. In each of these

examples, part of the fun lies in the Markov chain theory itself and part in the combinatorics of the

objects involved. There seems to be no end to the list of such problems, and each contains new

challenges and surprises.

As with Markov chains, Stein's method provides a rich source of theoretical and applied problems,

with the latter often providing insight into the former. On the applied side, techniques from Stein's

method are extremely useful in a wide variety of settings. For example, my most recent project, joint

with Alexander Bendikov and Anton Braverman [6], concerns an empirical process associated with the

eigenvalues of the perturbed hierarchical Laplacians introduced in [7]. These objects are analogues of

the famous Anderson Hamiltonians studied in connection with the phenomenon of localization, and

one is interested in the number of eigenvalues falling in a given sequence of intervals. The crux of the

problem lies in understanding certain sums of indicators with long-range dependence, and we were able

to use a Stein's method result from [1] (along with a good deal of delicate analysis) to prove Poisson

convergence with quantitative rates in total variation under quite mild assumptions. As a concrete

example, we considered perturbations of the fractional derivative operator Dα, α > 1, over the �eld

Qp of p-adic numbers.

In addition to bounding error terms or convergence rates in speci�c applications, there are many

distributions for which no Stein's method framework yet exists, and it is likely that working out the

details for some of these particular cases will yield general insights into the method as a whole. One

of the biggest present challenges is to �nd more unifying perspectives on the construction of Stein

identities and bounds on the corresponding solutions. The article [25] is a recent example of such an

undertaking and I am interested in pursuing a similar approach in the near future.
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